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Verification of acoustic solitary waves
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Experiments and numerical simulations are carried out to verify the existence of the
acoustic solitary wave in an air-filled tube with an array of Helmholtz resonators
connected. Following up previous work (Sugimoto et al. 1999), the experiments are
improved by using a newly designed piston driver to launch an initially plane pressure
pulse and also by extending the tube length from 7.4 m to 10.6 m. To highlight
the effect of the array of resonators, the case with no array is also examined in
parallel. Direct and indirect checks are made to verify the existence of the solitary
wave. The former compares the profiles and propagation speeds of pulses measured
experimentally to the solitary-wave solution. The latter checks the validity of nonlinear
wave equations in describing real wave evolution in the tube. Solving an initial-value
problem numerically with weakly lossy effects of boundary layers and jet loss at
the throat of the resonator, comparison is made between measured and simulated
evolution. The validity of the equations in the lossy case is necessary to maintain the
existence of the solitary wave in the lossless limit. It is revealed that nonlinear wave
equations originally derived for unidirectional propagation in the tube can provide
a good description of the real evolution, with some allowance for phase shifts on
reflection at both ends of the tube. In particular, it turns out that the lossy effects
are described quantitatively well. By establishing the validity of the equations, it is
concluded that the acoustic solitary wave exists.

1. Introduction
The discovery of the acoustic solitary wave in air has attracted much attention

(Physical Review Focus 1999; Hellemans 1999; Weiss 1999). This is perhaps because
it originates in the study of the practical problem of suppressing shock in tunnels
(Sugimoto 2001) and also academically because nonlinear acoustic waves usually
evolve into shocks and no solitary waves have so far been believed to exist in air.
This belief has been endorsed by the fact that air is a dissipative medium, not a
dispersive one favourable to the generation of the solitary wave. In fact, it is still true
that no solitary waves exist in open air.

As dispersion of acoustic waves is brought about by the presence of a boundary, a
guided wave propagation is necessary if the solitary waves are to be generated. But
weak dispersion resulting from non-uniformity of the cross-section of a tube or a
hereditary effect due to a boundary layer on the tube wall fails to yield the solitary
wave. But it has been revealed in theory that when a tube has a spatially periodic
structure by connecting an array of Helmholtz resonators appropriately, acoustic
solitary waves can be propagated (Sugimoto 1992, 1996). To confirm the theoretical
findings, experiments have been performed (Sugimoto et al. 1999). This paper follows
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up the previous work by making new experiments and also by numerical simulations
to verify their existence.

An acoustic solitary wave is the steady and stable propagation of a localized pulse
having a smooth profile free from a shock and consisting of a compression phase
only. The propagation speed is slower than the linear sound speed, i.e. subsonic,
but faster than a threshold value determined by a ‘size parameter’ of the array of
Helmholtz resonators. At the upper bound of the speed, the height of the solitary
wave is limited below that of the limiting solitary wave, while the height becomes
smaller as the speed approaches the lower bound. Namely, a higher solitary wave
propagates at higher speed. A solitary wave propagating at a speed close to the lower
bound may be regarded as substantially the K–dV soliton. As far as generation of
the K–dV soliton is concerned, incidentally, the Helmholtz resonators in the array
may alternatively be replaced by acoustically compact, closed side branches of any
shape, e.g. quarter-wavelength tube (Sugimoto 1995).

The previous experiments use a tube of length 7.4 m, to which the array of
Helmholtz resonators is connected. The temporal pressure profile of the pulse and the
propagation speed of the peak were measured experimentally and compared to the
theory. This may be called a direct check on the assumption that the pulse has evolved
into a solitary wave. Because of the good agreement with the theory, the existence
of the acoustic solitary waves is proved. In the experiments, however, there remain
technical points to be improved. One is the method of generating an initial pressure
pulse in the tube. By discharging pressurized air stored in a high-pressure chamber
through a small hole in a mechanical valve, it spreads spherically into the tube so
that one-dimensional propagation is not established for a while. In consequence, a
negative pressure (expansion) appears behind the main compression pulse. Because
this pressure dent is propagated at a speed slower than the sound speed, it interfers
with the subsonic solitary wave for a long time and makes measurements difficult. The
other technical problem is the tube length, which is not long enough in comparison
with the width of the solitary wave. In the present experiments, a new plane piston
driver is constructed so that the initial pulse may become planar from the beginning,
while the tube length is extended to 10.6 m. By using this tube with the same resonators
connected, the previous results are first re-examined.

In addition to the direct check, the existence of the acoustic solitary wave is
also shown by the following check. The solitary wave is the entity predicted by
the steady-progressive-wave solutions to the lossless version of the nonlinear wave
equations derived previously (Sugimoto 1992, 1996). In experiments, however, lossy
effects due to boundary layers and jet loss at the throat of the resonator are more
or less unavoidable, so that a perfect solitary wave cannot be achieved in reality. So
the experiments are simulated numerically by solving the nonlinear wave equations
including the weakly lossy effects to find how accurately the equations can describe
the real evolution. Provided that the validity of the equations is proved, it will follow
that the solitary wave can exist when the lossy effects are reduced. This check may
be indirect but it is intrinsic. No other ways to prove the existence are available than
recourse to this indirect check.

In what follows, the theory of the acoustic solitary wave is first summarized in § 2.
After describing the experimental setup in § 3, characteristics of the resonator used
are examined by measuring its acoustic admittance experimentally to compare it with
the theory in § 4. Methods of the experiments are described in § 5 and a comparison
of the pressure profile and propagation speed measured with the theory is given in § 6.
This is merely a re-examination of the previous results. Experiments in a tube with
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no array are made in parallel to highlight the effect of the array and to also verify the
existing theory due to Chester (1964), Keller (1981) and Sugimoto (1991). In order to
check validity of the equations, numerical simulations are carried out and compared
with the experiments in § 7. Finally discussions are given to verify the existence of the
acoustic solitary wave.

2. Summary of the theory of the acoustic solitary wave
2.1. Nonlinear wave equations

First, the theory of the acoustic solitary wave is summarized in this section. For the
details, reference should be made to Sugimoto (1992, 1996). The same notation, apart
from slight and obvious modifications, is used as in the references.

The solitary wave is characterized by two parameters. One is a size parameter of
the array κ defined by

κ =
V

Ad
� 1, (2.1)

which measures the magnitude of cavity volume V relative to tube volume Ad per
axial spacing between neighbouring resonators, A and d being tube cross-sectional
area and the axial spacing, respectively. The other is a natural angular frequency of
the resonator, which is given, in the lossless case, as

ω0 =

√
a2

0B

LeV
, (2.2)

where a0(=
√

γp0/ρ0), B , and Le denote, respectively, the linear sound speed, throat
cross-sectional area and its length taking account of end corrections specified later,
p0 and ρ0 being the pressure and the density of air in equilibrium, and γ the
ratio of specific heats. Taking the magnitude of a typical acoustic Mach number ε

measuring the order of nonlinearity and a typical angular frequency ω to be κ/2
and ω0, respectively, the coupling parameter K(= κ/2ε) and the tuning parameter
Ω[=(ω0/ω)2] may be set equal to unity (Sugimoto 1992).

The existence of the solitary wave is predicted by the steady-progressive-wave
solution to the lossless version of the following nonlinear wave equations. Introducing
f and g to denote the excess pressure in the tube p′ and in the cavity p′

c, respectively,
by

κf =
(γ + 1)

γ

p′

p0

and κg =
(γ + 1)

γ

p′
c

p0

, (2.3)

and defining the retarded time θ in a frame moving with the sound speed, and the
far-field coordinate X, respectively, by

θ = ω0

(
t − x

a0

)
and X =

κω0x

2a0

, (2.4)

t and x being the time and the axial coordinate along the tube, the nonlinear wave
equations are given as follows (see (2.28)†, (2.29) and (A.4) in Sugimoto 1992):

∂f

∂X
− f

∂f

∂θ
= −δR

∂1/2f

∂θ1/2
− ∂g

∂θ
, (2.5)

† The coefficient κ in (2.28) should be corrected to K .
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and

∂2g

∂θ2
+ δr

∂3/2g

∂θ3/2
+ g = f + 1

2
κN, (2.6)

where the loss is brought about by hereditary effects due to the boundary layer on
the tube wall and throat wall and is expressed in the form of the fractional derivative
of 1/2-order, defined by

∂1/2f

∂θ1/2
=

1√
π

∫ θ

−∞

1√
θ − θ ′

∂

∂θ ′ f (X, θ ′) dθ ′, (2.7)

and the derivative of 3/2-order defined as that derived by differentiating the derivative
of 1/2-order once with respect to θ . The loss due to the diffusivity of sound is
negligible, i.e. the term with ∂2f/∂θ2 has been dropped in (2.5), because the Reynolds
number Re defined by a2

0/νω, ν being the kinematic viscosity of air, is of order 107 in
experiments to be described. Note that the boundary-layer effects introduce not only
the loss (dissipation) but also dispersion. The parameters δR and δr are defined as

δR =
2C

√
ν/ω0

κR∗ and δr =
2

√
ν/ω0

r∗ , (2.8)

with C = 1 + (γ − 1)/
√

Pr , Pr being the Prandtl number, where R and r denote,
respectively, the radius of the tube and of the throat, R∗ and r∗ being the reduced
radii defined as R/(1 − r2/2dR) and r/cL with cL = L′/Le. Here Le (=L + 2 × 0.82r)
accounts for the well-known end corrections at both ends of the throat and L′

(=L + 2r) for the viscous end corrections (Sugimoto 1992).
When the magnitude of pressure disturbances becomes high, it may be appropriate

to include the nonlinear response of the resonator. It is taken into account through
the term κN/2 in (2.6) given by

N =

(
γ − 1

γ + 1

)
∂2g2

∂θ2
− 2V

(γ + 1)BLe

∣∣∣∣∂g

∂θ

∣∣∣∣∂g

∂θ
, (2.9)

where the first term on the right-hand side results from the nonlinearity due to
the adiabatic process in the cavity, while the second term, derived semi-empirically,
accounts for the jet loss resulting from difference in flow patterns on the inflow and
outflow sides of the throat.

2.2. Acoustic solitary wave

The acoustic solitary wave is predicted by the steady-progressive-wave solution to
(2.5) and (2.6) on neglect of all boundary-layer effects, i.e. δR and δr → 0, and the
higher-order term κN/2. Given a constant speed s in the (θ , X)-space, it is expressed
in the form of the inverse function as (Sugimoto 1996)

−4 tan−1

√
f+ − f

f − f−
+

2s√
−f+f−

log

∣∣∣∣∣ [
√

−f−(f+ − f ) −
√

f+(f − f−)]2

(f+ − f−)f

∣∣∣∣∣ ≡ F(f ) = |ζ |,

(2.10)
with ζ = θ − sX + constant and f± given by

f± = −2
(
s − 2

3

)
±

√
− 4

3
s + 16

9
, (2.11)
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the signs ± ordered vertically, where s to limited to the range 0 <s < 1, and
f− < 0 <f+. With f given above, g is obtained as

g = 1
2
f 2 + sf. (2.12)

The solution (2.10), which is valid for 0 < f � f+ over −∞ < ζ < +∞, gives a
compression pulse having a peak value f+ and symmetric form with respect to the
peak. The peak value increases as s decreases from unity. But since 0 < s < 1, f+ is
bounded below 8/3 at s = 0. Thus the peak excess pressure of the solitary wave p′

p

is in the range

0 < p′
p <

8κγ

3(γ + 1)
p0. (2.13)

The physical speed of propagation v is obtained by noting the definition of ζ as
v = a0/(1 + κs/2). Thus v is limited to the range

a0

1 + κ/2
< v < a0. (2.14)

The propagation speed of the acoustic solitary wave is slower than the sound speed
but faster than the threshold value a0/(1 + κ/2). The speed becomes faster as the
height increases.

The solitary-wave solution for an arbitrary value of s as given by (2.10) is
complicated. But it takes a simple form in the limiting cases as s → 0+ and s → 1−.
In the former limit, the speed of propagation tends to the sound speed and the
solution is given in the dimensional form for p′ as

p′

p0

=
8κγ

3(γ + 1)
cos2

[
ω0

4

(
t − x

a0

)]
for

∣∣∣∣ω0

(
t − x

a0

)∣∣∣∣ � 2π, (2.15)

and p′/p0 ≡ 0 for |ω0(t − x/a0)| > 2π. Although (2.15) is the solution to (2.5) and
(2.6), regularity is lost at both ends, i.e. the derivative of second order jumps there. In
this sense, (2.15) is called a limiting solitary wave. As s tends to unity, on the other
hand, f approaches the K–dV soliton. This is given dimensionally as

p′

p0

=
κγα

(γ + 1)
sech2

[√
α

12
ω0

(
t − x

v

)]
, (2.16)

with α = 3(1 − s) (0 < α � 1) and v = a0/[1 + κ(1 − α/3)/2].
The acoustic solitary wave for an intermediate value of s is considerably different

in waveform from the K–dV soliton. This may be found in a relation between a
half-width and a peak value. The half-width of the solitary wave is defined as the
interval ζ between two values of ζ at which f takes half of the peak value and is
given by 2F(f+/2). As the peak value increases (s → 0+), ζ does not change much
but approaches 2π. As the peak value decreases (s → 1−), of course, it diverges as
the inverse square root of the height. This is one of the well-known properties of the
K–dV soliton.

3. Experimental setup
The experimental setup is shown in figure 1 (see Hellemans 1999 and Sugimoto

2001 for photographs of the apparatus used in the previous experiment). It consists
of a tube, a piston driver unit, and measuring instruments, which are described below.
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Figure 1. Experimental setup.

Figure 2. Cross-section of the piston driver unit to launch an initial pressure pulse where the
pressurised air stored in the high-pressure chamber is released into the cylinder by opening
the mechanical valve to accelerate the piston forward. The piston is decelerated to stop by the
friction with the annular sheet of urethane rubber.

3.1. Tube

Two tubes are prepared, one with the array of resonators and the other without it.
Both tubes are otherwise identical in geometry. Each tube is straight and of length
10.6 m, with circular cross-section of inner diameter 2R (=80 mm) and thickness
7.5 mm, and is made of stainless steel. The inner surface is polished very smoothly by
honing with surface roughness Rz (ISO4287) below 0.6 µm. One end of the tube is
closed by a flat plate while the other end is connected to the piston driver unit.

3.2. Piston driver unit

An initial pressure pulse is generated by driving a piston pneumatically in a cylinder.
Figure 2 illustrates the assembly of the driver unit manufactured by Taiyo Limited,
Osaka, Japan. It consists of a high-pressure chamber and a circular cylinder in which
a piston is housed. A part of the cylinder on the opening side (to be connected to
the tube) is lined with an annular sheet of urethane rubber whose inner surface is
tapered slightly with a stopper in the form of a step. The high-pressure chamber and
the cylinder are connected by a mechanical valve operated electromagnetically.

The volume of the high-pressure chamber is about 2 × 10−3 m3 and the pressure
stored in it is variable up to 0.5 MPa. The piston is of diameter 83 mm, of axial length
16 mm and of mass 0.163 kg, while the cylinder is of axial length 380 mm in total and
the sheet is of axial length 73 mm and of inner diameter 80 mm at the step. The initial
position of the piston can be varied in the cylinder. The final position at which the
piston stops in the cylinder depends on the initial pressure stored in the high-pressure
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Figure 3. Cross-section of the resonator cut by a plane including the axis.

chamber and the initial position of the piston. But the piston is blocked by the step of
axial length 25 mm. No resonators can be connected along the cylinder of the driver
unit.

3.3. Resonators

Resonators are the same as those used in the previous experiments and originally
manufactured by Swagelok for the purpose of sample cylinders of gas (304L-HDF4-50
with suitable nipples). Each cylinder is of axisymmetric form and is made of stainless
steel. The cross-section including the axis is depicted in figure 3. The resonator is of
volume V (=49.8 cm3) on average while the throat is of length L (=35.6 mm) and of
diameter 2r (=7.11 mm) so that the volume of the throat is 1.41 cm3.

The resonators are connected to the tube in two arrays. As depicted in figure 1, they
are along two lines (axial lines) on the cylindrical external surface of the tube, whose
circumferential positions differ by 180◦ from each other. Further, the resonators are
staggered in both arrays. In each array, the axial spacing between the centres of the
throats of neighbouring resonators is 100 mm. In the upper array in figure 1, the axial
distance between the right-hand tube end and the resonator nearest to it is chosen
to be 25 mm so that the distance between the left-hand tube end and the resonator
nearest to it becomes 75 mm. In the lower array, the above distances to the tube ends
are reversed. There are 212 resonators connected, with the axial spacing d (=50 mm)
in both arrays, and the size parameter κ takes the value 0.198. The reason for the
staggered arrangement is to guarantee uniform axial spacing of the resonators in a
mirror image at the closed end, and also to avoid unfavourable localized oscillations.
As a reflected pressure wave is regarded as a mirror image of an incident wave, it is
preferable to set the axial spacing uniform in a mirror image as well.

To connect the resonators to the tube, the wall is bored with piping thread NPT-1/4
in. Each resonator is screwed into the wall so that the end surface of the throat is flush
with the inner surface of the tube. Ideally, all resonators should be identical. But they
differ slightly from each other in shape and volume of the cavity, whereas the size of
the throats may be regarded as being uniform in comparison with non-uniformity of
the volume of the cavity. In order to avoid randomness in distribution, the resonators
are arranged in order from the smallest one in volume and from the tube end on the
driver side. Figure 4 shows the axial distribution of the resonators where the abscissa
measures the distance from the tube end on the driver side and each volume includes
error of ±0.1 cm3 in measurements.

3.4. Measuring instruments

The temperature of the air in the tube and ambient pressure are measured by
a thermocouple (Chino 1SCHS1-0K 01006132) and a barometer (not depicted in
figure 1). The transient excess pressure due to a pulse is measured by two piezoelectric
transducers (PCB Piezotronics HM113A26) with resolution 0.07 kPa and sensitivity
1.45 ± 0.07 mVkPa−1 and a digital oscilloscope (LeCroy LT224). The transducers can
be set at positions with axial spacing 0.4 m apart from the tube end on the driver
side. For this purpose, the tube is bored with a NPT-1/4 in. array. In the tube with
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Figure 4. Distribution of the resonators along the tube.

the array of resonators, the circumferential positions of the holes differ in angle by
90◦ from those of resonators. Each transducer is connected with its face flush with
the inner surface of the tube. Holes not in use are plugged by nipples to avoid
leakage. When the pressure in the cavity is measured, the transducer is connected to
the bottom of the resonator by removing the end nipple.

4. Linear characteristics of the resonator
4.1. Acoustic admittance of the resonator

Before embarking on experiments, the validity of the linearized version of (2.6) is
checked by measuring an acoustic admittance (or acoustic mobility) of the resonator
experimentally. The relevance of the hereditary term is especially important. To this
end, it is appropriate to put (2.6) into dimensional form as (see (A.4) in Sugimoto
1992)

∂2p′
c

∂t2
+

2
√

ν

r∗
∂3/2p′

c

∂t3/2
+ ω2

0p
′
c = ω2

0p
′ +

γ − 1

2γp0

∂2p′2
c

∂t2
− V

ρ0a
2
0BLe

∣∣∣∣∂p′
c

∂t

∣∣∣∣∂p′
c

∂t
. (4.1)

Ignoring the nonlinear terms, suppose the excess pressure at the entrance of the throat
and the velocity of air flowing into the throat be in the form of p′ = Re{P exp(iωt)}
and w = Re{W exp(iωt)}, respectively, where P and W denote respective complex
amplitudes, and ω (>0) in this section is an angular frequency, not a typical frequency
as used in § 2. The acoustic admittance of the resonator is defined as BW/P . Noting
that the conservation of mass in the cavity requires

ρ0Bw =
V

a2
0

∂p′
c

∂t
, (4.2)

and using (4.1), the dimensionless acoustic admittance Y is defined in reference to the
typical admittance A/ρ0a0 of the tube as follows:

Y (ω) =
ρ0a0

A

BW

P
=

B

A

a0

Le

(
iω

ω2
0 − ω2 −

√
2νω3/r∗ + i

√
2νω3/r∗

)
. (4.3)

Note that the 1/2- and 3/2-order derivatives of exp(iωt) are given, respectively,

by [(1 + i)/
√

2]ω1/2exp(iωt) [=(iω)1/2 exp(iωt)] and [(−1 + i)/
√

2]ω3/2 exp(iωt)
[=(iω)3/2 exp(iωt)].
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As Y becomes purely imaginary in the limit as ν → 0, the real part of Y is due to
the loss. It takes the maximal value

Re{Y }max =
B

A

a0

Le

r∗
√

2νω0

=
Ba0

2ALeω
at ω = ωm = ω0 − ω, (4.4)

with a frequency downshift ω given by

ω =

√
νω0√
2r∗

=
δr√
8
ω0, (4.5)

where ω is truncated at the first order of δr . Similarly, the imaginary part of Y takes
the maximal value

Im{Y }max =
B

A

a0

Le

r∗
√

8νω0

=
Ba0

4ALeω
at ω = ω− = ω0 − 2ω, (4.6)

and the minimal value

Im{Y }min = −B

A

a0

Le

r∗
√

8νω0

= − Ba0

4ALeω
at ω = ω+ = ω0. (4.7)

Note that the maximal value of the real part is just double of that of the imaginary
part and the imaginary part takes its minimum at ω0 to the first order of δr .

4.2. Measurements of the acoustic admittance

The acoustic admittance is measured experimentally by using a long tube with a
single resonator connected. Launching plane pressure waves from the far end of the
tube toward the resonator, incident waves on the resonator and reflected waves from
it are calculated from the pressure measured at four points at least. Taking the axial
coordinate z along the tube with its origin at the resonator, let the excess pressure
and the axial velocity of air in the region z < 0 be denoted by p′

− and u−, respectively
and given as follows:

p′
− = I− exp[iω(t − z/a0)] + R− exp[iω(t + z/a0)], (4.8a)

u− = (ρ0a0)
−1 {I− exp[iω(t − z/a0)] − R− exp[iω(t + z/a0)]} , (4.8b)

and let the excess pressure p′
+ and the axial velocity u+ in z > 0 be given as follows:

p′
+ = I+ exp[iω(t + z/a0)] + R+ exp[iω(t − z/a0)], (4.9a)

u+ = (ρ0a0)
−1 {−I+ exp[iω(t + z/a0)] + R+ exp[iω(t − z/a0)]} , (4.9b)

where I± and R± are the complex amplitudes of the incident and reflected waves, and
the real parts are taken on the respective right-hand sides. Continuity of the pressure
and the mass flux at z = 0 requires

I− + R− = I+ + R+ = P, (4.10a)

S

ρ0a0

(I− − R−) =
S

ρ0a0

(−I+ + R+) + BW, (4.10b)

where S denotes the cross-sectional area of the tube used for measurements of the
acoustic admittance and the value of S used is not equal to that of A described in
§ 3. Eliminating BW by using (A/ρ0a0)YP , Y is calculated by

Y =
2S

A

(
I− − R+

I+ + R+

)
. (4.11)
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Figure 5. Experimental setup for measurements of the acoustic admittance of the resonator
where the z-axis is taken along the tube with its origin at the resonator in the sense toward the
flat plate, and the complex amplitudes of the incident waves on the resonator and the reflected
ones from it are designated by I± and R±, respectively.

The measurements are made by using a thin tube of inner diameter 40 mm and of
length 5 m, which is made of stainless steel and of thickness 5 mm. The experimental
setup is shown in figure 5. A single resonator is connected at a point 2 m away from
one end of the tube where the speaker (Fostex FE87) is mounted, while the other
end is closed by a flat plate. The speaker is located at z = − 2 m and the flat plate at
z = 3 m. The pressure is measured at five points: z = 0 m, ±0.1m and ±0.2m where
the centres of the microphone (Aco Type 7016) are positioned. The measurements of
the pressure are undertaken by Ono Sokki Inc., Yokohama, Japan. From the pressures
measured at two points at z < 0 and two points at z > 0, the left- and right-going
waves are calculated to yield I± and R±, and then Y is evaluated by (4.11). The loss in
the tube may be negligibly small because the distance between the measuring points
is short.

Taking the typical acoustic admittance A/ρ0a0 as that in the tube of diameter
80 mm (S/A= 1/4), figure 6 shows the real and imaginary parts of Y where the
solid circles represent the data measured at temperature 18.8 ◦C and atmospheric
pressure 0.1016 MPa, and the solid lines represent the theoretical values. The
sound pressure level is kept in a range between 95 and 85 dB for all frequencies
except for low ones less than 50 Hz, and the resolution in frequency is 1 Hz. The
theoretical curves are drawn by calculating (4.3) numerically with the material
constants: a0 = 343.0 m s−1 and ν = 0.1491 × 10−4 m2 s−1 (see the Appendix), so
that ω0/2π = 239.5 Hz, δr = 5.773 × 10−2 and ω/2π = 4.888 Hz. The measured data
appear to fit with the theory very well except for frequencies near the extrema.
Scattered data at low frequencies are obviously due to noise in the measurements. At
the frequency where the imaginary part vanishes and the real part takes its maximum,
the axial velocity is in phase with the pressure fluctuation. Then the magnitude of the
admittance becomes comparable with that in the tube in spite of the fact that the
cross-sectional area of the throat is merely 1% of that of the tube.

Table 1 compares quantitatively the measured values with the thoretical ones given
by (4.3) and the asymptotic ones given by (4.4) to (4.7). The frequencies for the extrema
are found to agree with the theoretical values very well. But the extremal values are
smaller than the theoretical ones in magnitude. This discrepancy of order 10% may
be attributed to the nonlinear effects, especially due to the jet loss at the throat. The
acoustic Mach number in the throat |w|/a0 is estimated as |W |/a0 = (AY/γB)|P |/p0.
Since A/B is of order 102 and |P |/p0 is of order 10−5 for 95 dB in SPL, the maximum
acoustic Mach number attains the order 10−3 when |Y | becomes of order unity in the
vicinity of ωm. In (4.1), the jet loss term is estimated in comparison with that of the
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Figure 6. Real and imaginary parts of the dimensionless acoustic admittance Y of the
resonator to be used in the array where the solid circles indicate the measured data at
temperature 18.8 ◦C and atmospheric pressure 0.1016MPa, and the solid lines represent the
theoretical values calculated by (4.3).

ω−/2π (Hz) Im{Y }max ωm/2π (Hz) Re{Y }max ω+/2π (Hz) Im{Y }min

Measured values 228 0.440 234 0.902 240 −0.441

Theoretical values 230.0 0.543 234.6 1.075 239.4 −0.532

Asymptotic values 229.7 0.532 234.6 1.065 239.5 −0.532

Table 1. Quantitative comparison of the extremal values of the acoustic admittance Y at
temperature 18.8 ◦C and atmospheric pressure 0.1016MPa.

linear loss by taking the ratio as follows:(
2
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(4.12)

where (4.2) has been used. In the vicinity of ωm, the factor within the parentheses
in the last term is AY/

√
2B by (4.4). Thus the ratio is estimated to be

(1/
√

2γ )(A/B)2|Y |2|P |/p0 and is found to be of order 10−1. Since the jet loss enhances
the linear loss, it is conjectured that the maximal value of the real part of Y measured



282 N. Sugimoto, M. Masuda, K. Yamashita and H. Horimoto

is smaller than the theoretical value by about 10%. This will be true for the imaginary
parts as well. But it is revealed that the linearized version of (2.6) can give an adequate
description of the response of the resonator for frequencies away from ωm.

Finally the following point is noted. In the expression for ω0 (=
√

a2
0B/LeV ), V is

taken as the volume of the cavity, which is slightly different from the volume of the
resonator because it excludes the throat. In fact, the value 49.8 cm3 used so far is the
volume of the resonator including 1.41 cm3 for the throat. Although this difference is
usually negligible, it turns out that ω0 based on the volume of the resonator agrees
better with the experimental value than that based on the volume of the cavity.
Therefore (4.2) may rather be interpreted as the equation for the conservation of
mass for the whole resonator. In the following, hence, ω0 is defined using the volume
of the resonator.

5. Experiments
5.1. Procedures for the experiments

Procedures for the experiments are described briefly. With the piston set at an
appropriate position in the cylinder, the tube and the piston driver unit are connected
through flanges. It is important to keep the air column confined hermetically. The
temperature of the air column and ambient pressure are measured and taken as the
equilibrium temperature T0 and pressure p0, respectively. Storing the pressurized air
in the high-pressure chamber and releasing it by opening the valve, the piston is
accelerated in the cylinder and decelerated to stop by friction between the piston
and the urethane sheet. By this movement, the pressure pulse is generated in the air
column. It continues to propagate back and forth, subjected to many reflections at
the flat plate and the piston surface, until it decays away eventually. The piston is
caught by the sheet so tightly that no air leaks through the gap between the piston
and the sheet.

In the following, let the x-axis be taken along the tube and directed toward the flat
plate with its origin at the contact surface of the two flanges on the tube side and on
the driver side. Let the initial and final positions of the piston surface be at x = xS

and x = xP (xS < xP < 0), respectively. The air column finally occupies the region
xP < x < xE where xE (=10.6 m) denotes the coordinate of the surface of the flat
plate at the closed end. The axial length of the column is denoted by l (=xE − xP),
and is longer than the tube length.

The pressure in the air column is measured at two positions, usually x = 0.4m
and 5.2 m, respectively. The former position is used to measure a pressure pulse
propagating down the tube initially when the piston is driven. This pulse is called the
initial pulse. The latter position is used to measure pulses reflected and propagating
unidirectionally. At this position, reflected pulses propagating toward the flat plate
or the piston can be identified easily. The pressure in the cavity of the resonator is
measured at a position x = 0.425 m or x = 5.225 m, slightly different from the above
positions.

5.2. Initial pressure pulse

Figures 7(a) and 7(b) show the profiles of the initial pressure pulses measured at
x = 0.4m in the tube with and without the array of resonators, respectively, as
jagged lines, where the origin of the time is adjusted to the maximum in the pressure
and the experimental conditions are: T0 = 25.0 ◦C and p0 = 0.1007 MPa for (a) and
T0 = 24.8 ◦C and p0 = 0.1010 MPa for (b). The meaning of the smooth lines will be
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Figure 7. Temporal profiles of the excess pressure measured at the position x =0.4 m where
(a) shows the profiles in the tube with no array of resonators at T0 = 25.0 ◦C and p0 =
0.1007MPa and (b) those in the tube with the array at T0 = 24.8 ◦C and p0 = 0.1010MPa
respectively. The smooth lines represent the profiles fitted by the function (7.2) with the
coefficients given in table 2.

explained later. The data shown here and hereafter are sampled at 10 µs and are
raw in the sense that no filtering has been applied. Some noise is observed when the
piston skids on the urethane rubber. The profiles are of asymmetric form, steepened
backward (rightward) with respect to the peak. In figure 7(a), the excess pressure
increases from zero to attain a peak and decreases to zero without any tail. It
consists of the compression phase only. Unlike in the previous experiments using the
mechanical valve, no negative pressure is generated behind the main pulse. The profile
in (b) is slightly different from the one in (a) because it has already been influenced
by eight resonators in 0 <x < 0.4m. A small oscillatory tail behind the main pulse
(apart from the noise) is caused by dispersion due to the resonators.

These profiles are obtained when the initial pressure in the high-pressure chamber,
denoted by pH, and the initial position of the piston xS are set at 0.2 MPa and
−0.21 m, respectively, while the final position xP is located at −0.054 m. If pH and
xS are held constant, the pressure profiles are reproduced with high accuracy in the
respective tubes. In passing, the profile in (a) enables us to guess the motion of the
piston. Since the excess pressure is proportional, in the linear theory, to the piston
velocity, it is considered that the piston is accelerated gradually but decelerated very
rapidly to stop without any bounce. The area under the profile corresponds to the
total displacement of the piston.
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Figure 8. Temporal profile of the excess pressure p′/p0 measured at x = 5.2m in the tube
with no array of resonators and at T0 = 25.0 ◦C and p0 = 0.1007Mpa. The pulses labelled n
(n = 0, 1, 2, . . . , 10) denote those which have so far undergone reflection n-times at the piston
and are propagating toward the flat plate, while the pulses labelled n′ (n = 0, 1, 2, . . . , 10)
have also undergone reflection n-times but they are propagating toward the piston, the origin
of time being set at the peak in figure 7(a).

5.3. Experiments in the tube with no array

For the initial pulse in figure 7(a), figure 8 shows the profile measured at x = 5.2m.
The initial pulse and its reflections by the flat plate and the piston are recorded with
respective time delays. The pulses labelled n (n = 0, 1, 2, . . . , 10) are the ones which
have returned to the position at x = 5.2m after being reflected n-times by the piston
(or reflected n-times by the flat plate) and are propagating toward the flat plate. The
pulses labelled n′ (n = 0, 1, 2, . . . , 10) are subjected to reflection by the piston n-times
(or reflected (n + 1)-times by the flat plate) and propagating toward the piston. The
pulse labelled n has travelled the distance 2nl since it initially passed the position at
x = 5.2 m.

The lifetime of the pulse may be seen in this figure. The initial smooth pulse in
figure 7(a) steepens forward to evolve into a triangular pulse with a shock ahead. This
is a well-known nonlinear process. Once the shock is formed, the shock strength, i.e.
the magnitude of discontinuity, is increased rapidly but gradually decreased while the
width of the pulse is increased. As the shock strength become small, the boundary-
layer effects dominate so that the upper edge of the shock tends to be rounded and
a tail tends to emerge, deviating from the exact triangular shape (Sugimoto 1991).
Since the tube length is limited, the tail and the next reflected pulse overlap so that
the tail is not seen clearly. Eventually the pulse decays to enter a linear regime as
it becomes old. Thus the shock appears unless the array of resonators is connected.
This experiment has another purpose: to examine validity of (2.5) without the term
of ∂g/∂θ for evolutions in the tube with no array. This is checked by numerical
simulations in § 7.

5.4. Experiments in the tube with the array

When the array of resonators is connected, the features of propagation are
dramatically changed. Figure 9 shows the profile measured at x = 5.2 m. The pulses
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Figure 9. Temporal profile of the excess pressure p′/p0 measured at x = 5.2m in the tube
with the array of resonators and at T0 = 24.8 ◦C and p0 = 0.1010MPa. The pulses labelled n
(n= 0, 1, 2, . . . , 10) denote those which have so far undergone reflection n-times at the piston
and are propagating toward the flat plate, while the pulses labelled n′ (n=0, 1, 2, . . . , 9) have
also undergone reflection n-times but they are propagating toward the piston, the origin of
time being set at the peak in figure 7(b).

are labelled in the same way as in figure 8. The pulse never evolves into a shock
and remains smooth in profile. At the early stage, an oscillatory tail appears behind
the main pulse. But it disappears in the course of propagation and the pulse tends
to take a symmetric form, though a small hump tends to emerge behind the main
pulse. Once such a profile is attained, it persists, which is one of the main features of
solitary waves. But the peak pressure tends to decrease in the course of propagation,
whereas the pulse width does not appear to change significantly.

In order to generate an initial pulse of higher peak with its width fixed, it is
necessary not only to set pH higher but also to set the piston further back, i.e. take
|xS| longer. By setting pH to 0.3, 0.4 and 0.5 MPa with xS at −0.25, −0.29 and
−0.33 m, respectively, the experiments are carried out. These combinations make the
peak pressure higher but keep the width almost constant. In all cases, it turns out
that the evolution is the same qualitatively.

6. Results of the experiments
In the tube with the array of resonators, it is seen that shock formation is suppressed

and the initial pulse remains smooth in profile. Although a perfect solitary wave would
not be expected in reality, it is interesting to examine whether or not such smooth
pulses possess the properties of an acoustic solitary wave. In this section, the profiles
and the propagation speeds are checked against the theory.

6.1. Comparison of the profiles

The solitary wave is determined uniquely in terms of s alone. Measuring the peak
pressure p′

p in the profile, s is calculated by (2.3) and (2.11) as

s = 1
2

(
1 − f+ +

√
1 + 2

3
f+

)
with f+ =

(γ + 1)

κγ

p′
p

p0

, (6.1)
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Figure 10. Comparison of the temporal profiles of the measured pulses in figure 9 with those
of the solitary wave where the jagged lines in (a) and (b) represent, respectively, the profiles
of the pulse labelled 0′ and 2′, with the theoretical ones with the corresponding peak values as
smooth lines.

where κ = 0.198 and γ = 1.402 (see the Appendix). For the pulses labelled 0′ and 2′

in figure 9, the respective profiles of the solitary waves versus the dimensional time
are drawn as thin lines in figure 10(a) and figure 10(b) where the experimental profiles
are indicated by the thick lines and the theoretical ones are translated horizontally
so that both peaks coincide. It is found that the measured profile in figure 10(a) fits
well with the theoretical one overall, while the profiles in figure 10(b) agree very well
except for the tail and hump. It will be revealed later that the tail and hump are
caused by the boundary layers and jet loss, respectively.

For other pulses, a similar check needs a lot of space, so instead a relation between
a half-width in time and a peak pressure is sought. The half-width is defined as
a time interval between two instants at which p′ takes half the value of the peak.
To obtain it from the data measured, the maximum is first identified and then the
instants of its half-value are sought after the profile has been smoothed by averaging
five consecutive data points. Denoting the half-width by 1/ωh, figure 11 depicts the
relation between the dimensionless half-width ω0/ωh and the peak pressure p′

p relative
to p0 for the pulses labelled 0, 1, 2, . . . in figure 9. Here the open symbols indicate the
data measured when the initial pressure in the high-pressure chamber is set at 0.2, 0.3,
0.4, and 0.5 MPa. The solid symbols indicate the initial values of the peak pressure
and the half-width measured at x = 0.4m. The initial half-width is almost constant
versus p′

p/p0 because the initial position of the piston is set to guarantee this.
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Figure 11. Relation between the dimensionless half-width ω0/ωh and the peak pressure p′
p/p0

for the pulses labelled 0, 1, 2, . . . in figure 9 where the open symbols indicate the measured
data for the initial pressure in the high-pressure chamber set at 0.2, 0.3, 0.4 and 0.5MPa, while
the solid symbols indicate, respectively, the peak pressure and half-width of the initial pulses
observed at x = 0.4m, and the solid line represent the theoretical relation for the solitary wave.

For κ = 0.198, the peak pressure should be below 0.308p0 for the limiting solitary
wave. The solid line represents the theoretical value of ω0/ωh [=ζ = 2F(f+/2)]
calculated by (2.10). Since the peak pressure decreases in the course of propagation,
the data indicated by the same symbol move leftward as the label n (n = 0, 1, 2, . . .)
is increased. The initial profiles are obviously different from those of the solitary
waves, whereas all initial values are close to the theoretical curve, but they first depart
from the theoretical curve and then approach it again. Thus it may be said that the
measured data agree well with the theory as p′

p/p0 becomes smaller. The relation
of the inverse square of the peak pressure is seen to be satisfied. But as the peak
pressure becomes large, there is a discrepancy, which will turn out to be attributed to
the jet loss.

6.2. Comparison of the propagation speeds

Next the propagation speed is checked. The speed is calculated by measuring the
elapsed time for which the pulse travels a certain distance, and then dividing the
distance with the time. For this purpose, new measurements are taken at two positions
x = 6 m and x =6.8 m. These positions are chosen in view of the distribution of
resonators in figure 4. The resonators in 6 m< x < 6.8 m are uniformly distributed
and have volume equal to the mean value 49.8 cm3. The speed is calculated by
following the method used in measuring the half-width. Identifying two instants when
the pressure takes half the value of the peak, the mid-time between them is sought
for each pulse measured at x = 6 m and x = 6.8 m. Thus the elapsed time for two
mid-times is obtained so that the propagation speed is calculated by dividing the
distance 0.8 m with this time.

Since the propagation speed v is close to the sound speed, deviation from it is
important. For the solitary wave, v is given by a0/(1 + κs/2), and fraction (a0 − v)/a0

is expressed in terms of s given by (6.1) as

a0 − v

a0

=
κs

2 + κs
. (6.2)

Figure 12 shows the relation between the fraction (a0 − v)/a0 and the peak pressure
p′

p/p0 where the measured data are marked by the symbols and the theoretical
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Figure 12. Relation between the fraction (a0 − v)/a0 and the peak pressure p′
p/p0 calculated

from the pulses measured at x = 6 m and x = 6.8m where the symbols indicate the data
measured for initial pressure in the high-pressure chamber set at 0.2, 0.3, 0.4 and 0.5MPa, and
the solid line represents the theoretical relation for the acoustic solitary wave.

relation (6.2) with (6.1) is indicated in the solid line. The symbols designate the data
measured for the cases where the initial pressure in the high-pressure chamber is set
at 0.2, 0.3, 0.4, and 0.5 MPa. In each case, the pressure profiles measured at x = 6 m
and 6.8 m are displayed in the same way as in figure 9 and the pulses are labelled,
though not reproduced here. The speed is calculated by taking the pulses labelled
from 0 to 5.

This is because reflection by the flat plate makes the measurements difficult as the
peak pressure becomes smaller and the pulse width becomes wider. In figure 12, the
data scatter around the solid line. Since the fraction is a first-order quantity in κ , it
contains an error of κ2, i.e. about 4% in the present case. Further, a non-uniformity
of a few percent exists in distribution of the resonators shown in figure 4. But the
data for 0.3 and 0.4 MPa agree with the theory relatively well.

7. Results of the numerical simulations
The comparison in the preceding section reconfirms the existence of the acoustic

solitary wave to the same extent as in the previous work (Sugimoto et al. 1999). In
experiments, however, effects of the boundary layers and jet loss always mask the
ideal, lossless evolution. To establish existence of the solitary wave, nevertheless,
the validity of (2.5) and (2.6) must be checked against experiments. In this section,
the evolution of the initial pulse is simulated numerically by taking account of the
boundary layers and the jet loss. This check clarifies how accurately (2.5) and (2.6)
can describe real evolution. If they turn out to be reliable enough, then it can be
concluded that the acoustic solitary wave exists when the boundary-layer effects and
the jet loss are suppressed.

However another problem arises. The equations assume a tube of semi-infinite
length whereas the actual tube length is limited. So it may be considered that bi-
directional propagation should be solved in the bounded region. Even so, however,
it is worthwhile to solve (2.5) and (2.6) by regarding the distance in uni-directional
propagation as that over which the pulse has actually travelled in the tube subject to
reflection. This result is expected to be applicable because the propagation of a single
pulse is considered and reflection at both ends will yield only a small phase shift in
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view of the analytical results on collision of shocks (Tatsumi & Tokunaga 1974) or
solitons (Oikawa & Yajima 1973).

7.1. Initial conditions and parameter values

The initial-value problem of (2.5) and (2.6) is posed for X > 0 with an initial condition
for f given by

f (θ, X = 0) = F (θ) (−∞ < θ < ∞), (7.1)

where F (θ) takes a pulse form with its peak at θ = 0 by making use of the arbitrariness
of additive constants in the definitions of θ and X on the right-hand sides of (2.4),
i.e. θ = ω0[t − (x − xI)/a0] and X = κω0(x − xI)/2a0, xI being a constant. Note that an
initial condition for g is not prescribed independently of F but given by a solution
of (2.6) with f = F (θ). A functional form of F is given by fitting the pressure profile
in figure 7 with an appropriate function.

Supposing that the profiles may be a Gaussian distorted on its right-hand side,
though there are no physical reasons behind assuming this, they are fitted by the
following function:

p′

p0

=
p′

p

p0

{
1 + tanh[c1(to − t)]

1 + tanh(c1to)

}
exp(−c2t

2), (7.2)

where c1, c2 and to are dimensional quantities to be determined. The factor in the
curly brackets is responsible for the distortion from the Gaussian exp(−c2t

2). The
initial condition F is then given by making use of (2.3) and replacing t with θ/ω0 at
x = xI = 0.4 m as follows:

F (θ) = 1
2
A{1 + tanh[α1(θo − θ)]} exp(−α2θ

2), (7.3)

with

A =
(γ + 1)

κγ

p′
p

p0

[
2

1 + tanh(c1to)

]
, (7.4)

α1 = c1/ω0, α2 = c2/ω
2
0 and θo = ω0to.

Here the technical method of fitting the profile is briefly mentioned. Because the
measured data are scattered due to noise and deficiency in resolution, the maximum
pressure at t = 0 is not taken as p′

p immediately but is evaluated as follows. Since the
profile on the left-hand side of the peak is expected to be the Gaussian, two factors
p′

p/p0[1+tanh(c1to)] and c2 are evaluated by using the least-squares method to fit the
data in the range t < 0 and 0.1p′

p � p′ � p′
p where p′

p is chosen temporarily to be the
maximum value at t = 0 and tanh[c1(to − t)] is approximated to be unity. With these
factors available, then, c1 and to are also determined by the least-squares method for
the data for t > 0 and 0.1p′

p � p′ � 0.9p′
p . Thus p′

p/p0 and c1 are obtainable. On
making a fit for t � 0, the factor tanh[c1(to − t)] has been set equal to unity. The
validity of this is endorsed now by the values of c1 and to obtained. For the measured
data indicated by the jagged lines in figure 7, the smooth lines represent the fitted
profiles (7.2). The respective numerical values of p′

p/p0, c1, c2, to, ω0, tanh(c1to) (≡σ ),
A, α1, α2 and θo are tabulated in each row of table 2. Although ω0 is meaningless
in the case with no array, this value at 25.0 ◦C is used as the reference to make the
profile and the parameters dimensionless. To obtain A as well, use is made of the
value of κ = 0.198.

The initial-value problem thus posed is solved by integrating (2.5) and (2.6)
numerically along the ‘characteristics’ defined by dθ/dX = −f (see Sugimoto 1991,
1992). Numerical values of the parameters δR and δr are given in table 3. Each
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Profile p′
p/p0 c1 (s−1) c2 (s−2) to (ms) ω0/2π (Hz) σ A α1 α2 θo

(a) 0.11281 1395.9 34707 1.2169 242.1 0.9352 1.009 0.9177 0.01500 1.851
(b) 0.10366 1541.4 35458 1.4390 242.0 0.9766 0.9081 1.014 0.01534 2.188

Table 2. Parameter values for fitting the initial profiles at x = 0.4 m shown in figures 7(a)
and 7(b) with the functions (7.2) and (7.3).

Case T0
◦C p0 MPa a0 (m s−1) ω0/2π (Hz) ν (10−4 m2 s−1) Pr C δR δr

N 25.0 0.1007 346.8 − 0.1561 0.7089 1.477 0.03777 −
W 24.8 0.1010 346.6 242.0 0.1556 0.7090 1.477 0.03759 0.05866

Table 3. Experimental conditions and the values of the material constants and the para-
meters δR and δr where N and W stand for the cases without and with the array, respectively.

row shows the respective experimental conditions for cases designated by N and W,
where N and W stand for the cases with no array and with the array, respectively.
The material constants in each case are evaluated by using the formulae in the
Appendix.

7.2. Results in the case with no array

First, the evolution from the profile in figure 7(a) is simulated by solving (2.5) without
the term ∂g/∂θ . The values of the parameters associated with the initial profile are
tabulated in table 2 while the experimental condition and the values of the constants
are given in table 3 in the row designated by Case N. The profiles simulated are
compared to those measured at x = 5.2 m. Denoting the distance between the points
at x = xI = 0.4 m and x = 5.2 m ≡ xM by lM (=4.8 m), the point x = xM corresponds
to X0 (=κω0lM/2a0) for the pulse labelled 0 in figure 8. For the pulses labelled n

(n � 1), the value of x − xI in X and θ is taken to be a distance with 2nl added on lM,
where l is 10.654 m, so that X corresponds to Xn (=X0 + nκω0l/a0). Note that ω0/a0

is determined by geometry alone and independent of temperature. Thus it follows
that X0 = 2.086, κω0l/a0 = 9.258 and Xn =2.086 + 9.258n.

Figure 13 shows the temporal profiles of p′/p0 simulated at X = Xn

(n= 0, 1, 2, . . . , 5), respectively, in (a) to (f ) as smooth lines where the abscissa is
reverted to the dimensional retarded time θ/ω0. These profiles at X = Xn are compared
with those labelled n in figure 8. Transforming the time for the abscissa in figure 8
into the retarded time t − (lM +2nl)/a0, the profiles labelled n (n= 0, 1, 2, . . . , 5) are
redrawn in figure 13(a) to figure 13(f ) as jagged lines. It is found that both profiles
resemble each other but the measured ones are delayed behind the simulated ones. This
is due to the phase lag on reflection. When two shocks collide with each other, they
are subjected to phase lag but there is no distortion in profiles (Tatsumi & Tokunaga
1974). Since reflection may be replaced by head-on collision of two identical shocks,
the above result is consistent qualitatively, though Tatsumi & Tokunaga (1974) take
account of the diffusive effect but no account of the boundary-layer effects.

Let us examine the shock in detail. Figure 14 displays the variations of the shock
strength [p′], i.e. the jump in the pressure, relative to p0 with respect to X. The solid
line represents the numerical results where the shock formation occurs at X = 10.21.
The experimental data marked by the dots are measured from the profiles in figure 8
at x = 5.2m, the label corresponding to the pulse in the figure. For the data labelled n
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Figure 13. Comparison of the temporal profiles of the excess pressure p′/p0 simulated at
X = X0, X1, . . . , X5 and measured at x = 5.2 m where the smooth and jagged lines represent
the simulated and measured profiles, respectively, and the retarded time measures θ/ω0 for the
simulation and t − (lM +2nl)/a0 for the pulse labelled n (n= 0, 1, 2, . . . , 5) in figure 8.
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Figure 14. Comparison of the shock strength in the tube with no array where the solid line
represents the calculation and the dots indicate the data measured from the profiles in figure 8,
n and n′ (n = 1, 2, . . . , 5) corresponding to the pulses there, and X is calculated by taking the
added distance lM + 2nl for the data labelled n and lM + 2l′

M + 2nl for the ones labelled n′,
respectively, l′

M = xE − xM = 5.4 m.

(n= 1, 2, . . . , 5), the value of x − xI in X is taken to be the added distance lM +2nl,
while for the ones labelled n′, the added distance is taken as lM + 2l′

M +2nl, l′
M being

the distance xE − xM = 5.4 m. The experimental data, except for that of the largest
strength, are found to fit well with the theory, though they are subject to the phase



292 N. Sugimoto, M. Masuda, K. Yamashita and H. Horimoto

0.10

0.05

–0.01 0 0.01

0

0.02 –0.01 0 0.01 0.02 0.03

0

X = X0
(a)

0.10

0.05

0 0.01 0.02 0.03 0 0.01 0.02 0.03 0.04

0

0.10

0.05

0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.05

0

1
X = X1

(b)

2

X = X2(c)

3

X = X3(d )

4

X = X4(e)

5

X = X5( f )

Retarded time (s) Retarded time (s)

p'
p0

p'
p0

p'
p0

Figure 15. Comparison of the temporal profiles of the excess pressure p′/p0 simulated at
X = X0, X1, . . . , X5 and measured at x = 5.2 m where the smooth and jagged lines represent
the simulated and measured profiles, respectively, and the retarded time measures θ/ω0 for the
simulation and t − (lM + 2nl)/a0 for the pulse labelled n (n = 0, 1, 2, . . . , 5) in figure 9.

lag. It is conjectured that the discrepancy between the data of the largest strength and
the theory might result from the fact that the initial profile measured in figure 7(a) is
not well approximated by the fitted function (7.3) in the vicinity of the peak. Making
allowances for this and the phase lag, it may be said that the experimental results are
simulated quantitatively very well. Thus validity of (2.6) without ∂g/∂θ is justified.

7.3. Results for the case with the array of resonators

Next we solve the initial-value problem of (2.5) and (2.6) subject to the initial condition
(7.3) corresponding to the pressure profile in figure 7(b). The fitting values for the
profile are tabulated in table 2, while the experimental condition is given in table 3
in the row designated by Case W. Figure 15 compares the results of simulation
with those measured at x =5.2 m. The temporal profiles of p′/p0 simulated at
X = Xn = 2.086 +9.258n (n= 0, 1, 2, . . . , 5) are depicted in figure 15(a) to figure 15(f ),
respectively, as smooth lines where the abscissa measures the dimensional retarded
time θ/ω0. The corresponding measured profiles are indicated by the jagged lines
where the retarded time is taken as t − (lM +2nl)/a0 for the pulse labelled n. It is
found that the measured profiles are well simulated, but they are subject to a phase
lead this time. This is conjectured to be brought about by reflection at both ends.
For head-on collision of two identical solitons, it is known that they are subjected to
a repulsive force so that the phase lead occurs (Oikawa & Yajima 1973). Except for
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Figure 16. Temporal profiles of the excess pressure p′
c/p0 calculated from the solution (2.6)

with f =F fitted by (7.3) for the profile in figure 7(b) and measured in the cavity at x = 0.425m
where the smooth and jagged lines represent the calculated and measured profiles, respectively.

the phase lead, the decaying behaviour and emergence of an oscillatory tail is well
captured quantitatively in the simulations. In figure 15(c) to figure 15(f ), emergence
of a small hump on the right-hand side of the peak is also reproduced.

Next let us check the pressure in the cavity. In particular, it is interesting to examine
the initial profile of g. Is it really determined by a solution to (2.6) with f = F? To
this end, the experiment to measure the pressure in the tube at x = 0.4 m and in
the cavity at x = 0.425 m is repeated because there is no resonator at x = 0.4m. The
experimental condition is the same as Case W in table 3 except for temperature:
T0 = 24.7 ◦C. The pressure profile in the tube at x = 0.4 m is seen to be identical to
the one in figure 7(b) and no difference can be found with the naked eye. In fact, the
profile can be fitted by the same parameters as for profile (b) in table 2. Figure 16
shows the comparison of the excess pressure p′

c/p0 calculated from the solution (2.6)
with f = F fitted by (7.3) and measured at x = 0.425 m where the smooth and jagged
lines represent the calculated and measured profile, respectively. The calculated profile
is the initial profile of g at X = 0. But this is different, strictly speaking, from the one
at x = 0.425 m. This point corresponds to X = X (=0.025κω0/2a0 ≈ 0.01) where
a0 and ω0 are measured in units of m s−1 and s−1, respectively. In the results of the
simulation, however, no difference is seen in the figure. It is gratifying to find that
both profiles agree quantitatively with each other very well. Two oscillations in the
tail are well reproduced. This confirms the validity not only of (2.6) alone but also of
both (2.5) and (2.6).

Finally the pressure profiles in the cavity at the point x = 5.225 m are checked.
To this end, the experiment is again repeated to measure the pressure in the tube at
x = 0.4m and the pressure in the cavity at x = 5.225 m. The experimental condition
is the same except for temperature: T0 = 24.6 ◦C. The position at x =5.225 m for
the pulse labelled n corresponds to X =Xn + X. Here X is also neglected.
Figure 17 compares the profiles of p′

c/p0 calculated from the solutions of g at
X = Xn (n= 0, 1, 2, . . . , 5), and measured at x =5.225 m, as smooth and jagged lines,
respectively, where the abscissa is reverted to the dimensional retarded time θ/ω0 for
the simulation and t − (lM + 2nl)/a0 for the pulse labelled n. In this case as well, the
measured profiles are well simulated except for the phase lead. In figure 17(b) and
figure 17(c), the measured peak pressure is slightly higher than that simulated. But
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Figure 17. Comparison of the temporal profiles of the excess pressure p′
c/p0 simulated at

X =X0, X1, . . . , X5 and measured in the cavity at x = 5.225m where the smooth and jagged
lines represent the simulated and measured profiles, respectively, and the retarded time measures
θ/ω0 for the simulation and t − (lM + 2nl)/a0 for the pulse labelled n (=0, 1, 2, . . . , 5).

the decaying behaviour is well described quantitatively. Thus it is revealed that (2.5)
and (2.6) are reliable enough to simulate real evolutions.

8. Discussion
Lossy effects on the deformation of the profile are discussed in this section. First, the

lossless evolution from profile (b) in table 2 is solved by ignoring the boundary-layer
effects and κN/2 in (2.5) and (2.6). Since the term κN/2 is mainly contributed by the
jet loss, this term may be called simply the jet loss. Figure 18(a) shows the results of
simulations for p′/p0 at X = 0, X1, X2, . . . , X5. It is surprising to find that the peak
becomes higher as it evolves. For the profiles at X = X2, X3, X4 and X5, the solitary
waves having the corresponding peak values are drawn as broken lines. The profile
at X = X5 is almost identical to the solitary wave, though an oscillatory tail develops.

Next only the boundary-layer effects are taken into account and the same initial-
value problem is solved. Figure 18(b) depicts the results of simulations where the
broken lines represent the solitary waves. The boundary-layer effects give rise to
significant attenuation of the peak value and retardation in propagation. Nevertheless
the profile at X = X5 is well approximated by the solitary wave, but the tail
becomes thicker. Further, when the full equations are solved, the results are shown
in figure 18(c). The jet loss gives rise to further decrease in the peak value and
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Figure 18. Effects of the boundary layers and the jet loss on the evolution from profile (b)
in table 2 where the temporal profiles of p′/p0 at X = 0, X1, X2, . . . , X5 versus the retarded
time θ/ω0 are shown for (a) without both the boundary-layer effects and the jet loss, (b) with
the boundary-layer effects but without the jet loss, and (c) with all effects included, and the
broken lines represents the fitted solitary waves.

retardation. The profiles on the left-hand side of the peak remain close to the solitary
waves. But a hump rather than the tail apears on the right-hand side. Below the
half-value the profiles become asymmetric. This may explain why the direct check of
the half-width has led to good agreements with the theory in spite of the existence of
the lossy effects.

These results also suggest improvements of the geometry of the tube and the
resonators and also of experimental conditions. To reduce the boundary-layer effects,
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Figure 19. Simulation of the evolution in the tube with the array of resonators with κ = 0.0991
and the boundary-layer effects and the jet loss reduced by remodelling the resonators so as
to double B , L and d and by increasing the equilibrium pressure to 10 MPa at T0 = 300 K
where the initial profile (7.3) with A = α1 = 1, α2 = 0.015 and θo = 2 is imposed at X = 0.
The solid lines represent the numerical simulations with the solitary waves as broken lines, the
dimensionless distance 10 in X corresponding to 45 m physically.

use of a wider tube and a throat is obviously preferable. Besides this, use of a higher
equilibrium pressure p0 is also desirable. But the jet loss cannot be reduced by these
alterations, since it is determined solely by the specific geometry of the resonator.
For the resonator used, the coefficient of the jet loss κV/(γ + 1)BLe in (2.6) takes
the large value 2.50. To reduce this, a wide and longer throat is required. If B and L

are taken double the size, the coefficient becomes a quarter of the present value with
natural angular frequency almost unchanged.

In the light of these results, we finally simulate the evolution in the present tube
by using the resonators remodelled to have doubled values of B and L and also
by reducing the value of κ to half, i.e. 0.0991, by taking double the axial spacing
of resonators. Then κV/(γ + 1)BLe is reduced to 0.304. In addition, p0 is set to be
10 MPa at T0 = 300 K. The material constants in this case are given separately in the
last paragraph of the Appendix. The equation of state for the ideal gas is assumed
to be valid for small changes around 10 MPa (Hilsenrath et al. 1960). Using those
data, it follows that ω0/2π = 263.4 Hz, δR =8.570 × 10−3 and δr =4.185 × 10−3. Thus
the effect of the boundary layers is considerably suppressed, but that of the jet loss
may be even larger.

Assuming the profile (7.3) with A = 1, α1 = 1, α2 = 0.015 and θo = 2 in view of
the initial profile (b) in table 2, figure 19 shows the profiles of p′/p0 as the solid
lines up to X = 50 in steps of 10 with the solitary waves as the broken lines having
the corresponding peak values at X = 30, 40 and 50. As X increases, the initial
pulse evolves into the solitary wave except for the tail. The peak value does not
change much once the pulse has almost approached the solitary wave. For κ = 0.0991,
dimensionless distance 10 corresponds to 45 m. Thus the pulse can be propagated
with little attenuation over a much longer distance than in the present experiments.
This is indeed a ‘gas-dynamic’ solitary wave with very high peak pressure, although
the adjective ‘acoustic’ gives an impression of very small disturbances. Such a solitary
wave may find applications in thermoacoustic problems (Sugimoto & Tsujimoto
2002).
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9. Conclusions
This paper has examined the existence of the acoustic solitary wave by performing

both experiments and numerical simulations to strengthen the conclusions in the
previous work (Sugimoto et al. 1999). The experimental apparatus has been greatly
improved by using a newly designed piston driver to launch a plane pressure pulse,
and also extending the tube length from 7.4 m to 10.6 m. The methods and results
of the experiments have been described in detail. On the other hand, the simulations
have been carried out in parallel by solving the initial-value problems of the nonlinear
wave equations (2.5) and (2.6). The existence of the solitary wave has been checked
in two ways. One is the direct check of the profiles and the propagation speeds of the
measured pulses against the theory. This is simply a re-examination of the previous
results. This check has reconfirmed existence of the solitary wave.

The other is an indirect but intrinsic check by examining the validity of the basic
equations suggesting the existence of the solitary waves. Taking account of all lossy
effects, the evolution observed has been simulated numerically. The evolution in the
tube with no array has also been checked because no experimental verification of
the theory has so far been made. It is revealed that the shock formation and the
boundary-layer effects are well reproduced in comparison to the experimental results.
The quadratically nonlinear wave equation (2.5) without ∂g/∂θ , originally for uni-
directional propagation, is found to be applicable even to propagation in the tube of
finite length if some phase lag on reflection is allowed.

For the case with the array of resonators as well, it is revealed that the evolution in
the experiments is simulated quantitatively well if a phase lead is allowed this time. In
particular, the lossy effects are well reproduced. As the peak pressure becomes higher,
the jet loss comes into play. It yields a hump and makes the profile asymmetric.
But when the jet loss becomes primary, the solitary-wave solution (2.10) becomes
invalid. Since the jet loss in the resonators used turns out to be very large, the solitary
wave near the limiting one is difficult to generate in the present tube. Even so, it
has been proven that nonlinear wave equations (2.5) and (2.6) can still describe the
real evolution accurately in the tube of finite length. Now that the validity of the
equations is established, it can be concluded that the acoustic solitary wave exists in
the lossless limit.

The authors acknowledge the comments by reviewers for improvement of the
manuscript, and also assistance of Messrs S. Deguchi and Y. Masuda in doing the
experiments. This work has been supported by the Grants-in-Aids from the Japan
Society of Promotion of Science and also from The Mitsubishi Foundations, Tokyo,
Japan.

Appendix. Evaluation of material constants of air
This Appenidix is devoted to summary of the formulae necessary to evaluate

the material constants of air in the main text. All formulae are well known and
documented in books, e.g. see Pierce (1991, pp. 28–29 and 513–514).

Air is assumed to obey the equation of state of an ideal gas with gas constant
R = 2.870 × 102 J kg−1 K−1. As the sound speed a0 is given by

√
γp0/ρ0(=

√
γ RT0),

we use the formula expanded around T0 = 273.16 K:

a0 = 331.5 + 0.61 × (T0 − 273.16) m s−1, (A 1)
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where T0 is measured in the absolute temperature units (K) and the effect of humidity
is ignored. The specific heat cp is taken to be the constant 1.007 kJ kg−1 K−1, while
the ratio of specific heats γ is assumed independent of temperature and is set equal
to 1.402.

The viscosity and the thermal conductivity are functions of temperature only. The
viscosity µ at temperature T0 is evaluated by Sutherland’s formula:

µ

µC

=

(
T0

TC

)3/2
TC + TS

T0 + TS

, (A 2)

where µC = 1.846 × 10−5 kg m−1 s−1 and TS =110.4 K for TC = 300 K. The thermal
conductivity kT at T0 is evaluated by the empirical formula

kT

kT C

=

(
T0

TC

)3/2
TC + TA exp(−TB/TC)

T0 + TA exp(−TB/T0)
, (A 3)

where kT C = 2.624 × 10−2 W m−1 K−1, TA = 245.4 K and TB =27.6 K.
The kinematic viscosity ν at T0 is obtained by dividing µ by the density ρ0 at

equilibrium where ρ0 is calculated by the equation of state: ρ0 = p0/RT0. With ν and
Pr(=µcp/kT ) in C known, and ω0 dependent on a0, δR and δr are evaluated. Their
values used in the simulations are tabulated in table 3.

Finally the data of the material constants at T0 = 300 K and p0 = 10 MPa are presen-
ted. According to JSME (1994), ρ0, cp, kT and γ takes the values 1.169 × 102 kg m−3,

1.163 kJ kg−1 K−1, 3.178 × 10−2 W m−1 K−1 and 1.568, respectively. Thus it follows

that a0 = 369.4 m s−1, Pr = 0.7491, C = 1.656 and ν = 1.751 × 10−7 m2 s
−1

, respectively.
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